New Fibonacci and Lucas primes
نویسندگان
چکیده
Extending previous searches for prime Fibonacci and Lucas numbers, all probable prime Fibonacci numbers Fn have been determined for 6000 < n ≤ 50000 and all probable prime Lucas numbers Ln have been determined for 1000 < n ≤ 50000. A rigorous proof of primality is given for F9311 and for numbers Ln with n = 1097, 1361, 4787, 4793, 5851, 7741, 10691, 14449, the prime L14449 having 3020 digits. Primitive parts F ∗ n and L∗n of composite numbers Fn and Ln have also been tested for probable primality. Actual primality has been established for many of them, including 22 with more than 1000 digits. In a Supplement to the paper, factorizations of numbers Fn and Ln are given for n > 1000 as far as they have been completed, adding information to existing factor tables covering n ≤ 1000.
منابع مشابه
A Probabilistic Primality test Based on the Properties of Certain Generalized Lucas Numbers
After defining a class of generalized Fibonacci numbers and Lucas numbers, we characterize the Fibonacci pseudoprimes of the mth kind. In virtue of the apparent paucity of the composite numbers which are Fibonacci pseudoprimes of the mth kind for distinct values o f the integral parameter m , a method, which we believe to be new, for finding large probable primes is proposed. An efficient compu...
متن کاملOn the Divisibility of Fibonacci Sequences by Primes of Index Two
Brother Alfred has characterized primes dividing every Fibonacci sequence [2] based on their period and congruence class mod 20. More recently, in [4] Ballot and Elia have described the set of primes dividing the Lucas sequence, meaning they divide some term of the sequence. Our purpose here is to extend the results of the former paper utilizing the methods of the latter. In particular we will ...
متن کاملARE PSEUDOPRIMES FOR ALMOST ALL PRIMES p
It was proven by Emma Lehmer that for almost all odd primes p, F2p is a Fibonacci pseudoprime. In this paper, we generalize this result to Lucas sequences {Uk}. In particular, we find Lucas sequences {Uk} for which either U2p is a Lucas pseudoprime for almost all odd primes p or Up is a Lucas pseudoprime for almost all odd primes p.
متن کاملFibonacci numbers and Fermat ’ s last theorem
numbers. As applications we obtain a new formula for the Fibonacci quotient Fp−( 5 p )/p and a criterion for the relation p |F(p−1)/4 (if p ≡ 1 (mod 4)), where p 6= 5 is an odd prime. We also prove that the affirmative answer to Wall’s question implies the first case of FLT (Fermat’s last theorem); from this it follows that the first case of FLT holds for those exponents which are (odd) Fibonac...
متن کاملTrigonometric Expressions for Fibonacci and Lucas Numbers
The amount of literature bears witness to the ubiquity of the Fibonacci numbers and the Lucas numbers. Not only these numbers are popular in expository literature because of their beautiful properties, but also the fact that they ‘occur in nature’ adds to their fascination. Our purpose is to use a certain polynomial identity to express these numbers in terms of trigonometric functions. It is in...
متن کاملThe (non-)existence of perfect codes in Lucas cubes
A Fibonacci string of length $n$ is a binary string $b = b_1b_2ldots b_n$ in which for every $1 leq i < n$, $b_icdot b_{i+1} = 0$. In other words, a Fibonacci string is a binary string without 11 as a substring. Similarly, a Lucas string is a Fibonacci string $b_1b_2ldots b_n$ that $b_1cdot b_n = 0$. For a natural number $ngeq1$, a Fibonacci cube of dimension $n$ is denoted by $Gamma_n$ and i...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- Math. Comput.
دوره 68 شماره
صفحات -
تاریخ انتشار 1999